3x^2+6x=100

Simple and best practice solution for 3x^2+6x=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+6x=100 equation:


Simplifying
3x2 + 6x = 100

Reorder the terms:
6x + 3x2 = 100

Solving
6x + 3x2 = 100

Solving for variable 'x'.

Reorder the terms:
-100 + 6x + 3x2 = 100 + -100

Combine like terms: 100 + -100 = 0
-100 + 6x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-33.33333333 + 2x + x2 = 0

Move the constant term to the right:

Add '33.33333333' to each side of the equation.
-33.33333333 + 2x + 33.33333333 + x2 = 0 + 33.33333333

Reorder the terms:
-33.33333333 + 33.33333333 + 2x + x2 = 0 + 33.33333333

Combine like terms: -33.33333333 + 33.33333333 = 0.00000000
0.00000000 + 2x + x2 = 0 + 33.33333333
2x + x2 = 0 + 33.33333333

Combine like terms: 0 + 33.33333333 = 33.33333333
2x + x2 = 33.33333333

The x term is 2x.  Take half its coefficient (1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
2x + 1 + x2 = 33.33333333 + 1

Reorder the terms:
1 + 2x + x2 = 33.33333333 + 1

Combine like terms: 33.33333333 + 1 = 34.33333333
1 + 2x + x2 = 34.33333333

Factor a perfect square on the left side:
(x + 1)(x + 1) = 34.33333333

Calculate the square root of the right side: 5.859465277

Break this problem into two subproblems by setting 
(x + 1) equal to 5.859465277 and -5.859465277.

Subproblem 1

x + 1 = 5.859465277 Simplifying x + 1 = 5.859465277 Reorder the terms: 1 + x = 5.859465277 Solving 1 + x = 5.859465277 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = 5.859465277 + -1 Combine like terms: 1 + -1 = 0 0 + x = 5.859465277 + -1 x = 5.859465277 + -1 Combine like terms: 5.859465277 + -1 = 4.859465277 x = 4.859465277 Simplifying x = 4.859465277

Subproblem 2

x + 1 = -5.859465277 Simplifying x + 1 = -5.859465277 Reorder the terms: 1 + x = -5.859465277 Solving 1 + x = -5.859465277 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = -5.859465277 + -1 Combine like terms: 1 + -1 = 0 0 + x = -5.859465277 + -1 x = -5.859465277 + -1 Combine like terms: -5.859465277 + -1 = -6.859465277 x = -6.859465277 Simplifying x = -6.859465277

Solution

The solution to the problem is based on the solutions from the subproblems. x = {4.859465277, -6.859465277}

See similar equations:

| -9a+10=28 | | 9(r-5)=11r+3 | | -4x-73=26+5x | | 7m-2=4m+m | | (x^3-7)(x^2+6x)= | | 2(n-4)-(6-5n)=6n | | 2e^3x=4 | | 36x^3-28x^2+45x-35= | | log*12*(3x-6)=2 | | sin(a)=insa | | 6x^3+9x^2+15x= | | (7x^2+5x-1)(x^2-6x+9)= | | -17+5x=x+35 | | 4j^2-33j+8=0 | | r^2+2r-10=0 | | 1-2(x+3)+4=1 | | -107-2x=8x+53 | | -17=6x-2 | | -91-x=9x+39 | | 10x^4-10x=0 | | 31j^2-10j=0 | | y=2x^2-4 | | -7=-77y | | 46.9-3x=26+8x | | 5+(4+y)= | | -15-2x=12+x | | r^2+12r+36+r^2=81 | | (x^3+2x+2)(x^2-x-1)= | | -32+7x=16+4x | | 7x-8(x+3)=14 | | 4-[(5-9)-2]= | | 5+2x+x=3x-3+8 |

Equations solver categories